Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 697-703, 2018.
Article in English | WPRIM | ID: wpr-727855

ABSTRACT

Myoblast fusion depends on mitochondrial integrity and intracellular Ca²⁺ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with [Ca²⁺]i regulation in normal and mitochondrial DNA-depleted (ρ0) L6 myoblasts. The ρ0 myoblasts showed impaired myotube formation. The inwardly rectifying K⁺ current (I(Kir)) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated Ca²⁺ channel and Ca²⁺-activated K⁺ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the I(Kir). The ρ0 myoblasts showed depolarized resting membrane potential and higher basal [Ca²⁺]ᵢ. Our results demonstrated the specific downregulation of I(Kir) by dysfunctional mitochondria. The resultant depolarization and altered Ca²⁺ signaling might be associated with impaired myoblast fusion in ρ0 myoblasts.


Subject(s)
Antimycin A , Down-Regulation , Electron Transport , Ion Channels , Membrane Potentials , Mitochondria , Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL